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Abstract

We present a first attempt at solution the problem of the growth of a single void in the presence of anisotropically

diffusing radiation induced self-interstitial atom (SIA) clusters. In order to treat a distribution of voids we perform

ensemble averaging over the positions of centres of voids using a mean-field approximation. In this way we are able to

model physical situations in between the Standard Rate Theory (SRT) treatment of swelling (isotropic diffusion), and

the purely 1-dimensional diffusion of clusters in the Production Bias Model. The background absorption by dislocations

is however treated isotropically, with a bias for interstitial cluster absorption assumed similar to that of individual SIAs.

We find that for moderate anisotropy, unsaturated void growth is characteristic of this anisotropic diffusion of clusters.

In addition we obtain a higher initial void swelling rate than predicted by SRT whenever the diffusion is anisotropic.

Crown Copyright � 2002 Published by Elsevier Science B.V. All rights reserved.

1. Introduction

Until recently, models for the kinetics of evolution of

microstructure of materials under cascade damage con-

ditions have been based primarily on either the case of

isotropic 3-dimensional (3-D) diffusion of vacancies and

self-interstitial atoms (SIAs), or the case where some

SIAs are clustered and perform strictly 1-dimensional

(1-D) glide. The first case is a principal assumption of

Standard Rate Theory (SRT). SRT uses a bias in the

absorption of defects by dislocations [1], favouring SIAs

over vacancies, and so allows unsaturated void swell-

ing at large neutron doses, as observed experimentally.

However, SRT grossly underestimates void growth at

low doses and low dislocation densities [2]. The second

case, which is the hallmark of the Production Bias

Model (PBM) [3], accounts for high swelling rates ob-

served experimentally at small irradiation doses. But

with the assumptions and defect interactions considered

so far, in every case it predicts complete saturation of

void growth at high doses [4–6], which is not always

observed experimentally.

This failing of the approximations used so far in the

PBM, together with evidence from molecular dynamics

(MD) studies that have shown that smaller SIA clusters,

at least, do not adhere to strictly 1-D diffusion, has

prompted investigation into the effects of deviations

from strict 1-D motion. The two physically likely devia-

tions from strict 1-D motion are compared to random

isotropic diffusion in Fig. 1. Both deviations can be seen

in MD simulations of motion of a 3 SIA cluster in a-Fe
at 1000 K [7]. Both the Burgers vector (BV) changes, and

the self-climb of SIA clusters are less important for large

clusters. The BV changes occur with frequency of order

expð� ffiffiffi
n

p Þ, while the transverse diffusion coefficient due

to self-climb is of order Dcd=n3=2, where n is the number
of interstitials in the cluster, and Dcd is the dislocation

core diffusion coefficient [8]. Thus for large clusters self-

climb is the more important of the two effects.

Recent studies have investigated the kinetics of the

SIA cluster-void reaction kinetics in the case of random

BV changes [8,9]. In this study, we present a theory of
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void-size dependent swelling in the presence of aniso-

tropically diffusing (self-climbing) SIA clusters.

2. The model

We model anisotropic diffusion of SIA clusters, with

the diffusion coefficient in one axial direction greater

than those in the two transverse directions, which are

considered to be equal. Physically, if 1-D axial motion

postulated by the PBM is considered to be the rapid

diffusive motion of a SIA cluster in the form of a bundle

of crowdions, then this model would allow an additional

smaller component of SIA edge diffusion around the

circumference of the SIA cluster, leading to self-climb

and to the random variation of the transverse position

of the centre of the cluster. Just as in PBM, there will be

a population of these defects for each equivalent crystal

direction of propagation. Mathematically, we represent

the diffusion by

oCðq; z; tÞ
ot

¼ D
o2

oz2

�
þ �

o2

oq2

�
Cðq; z; tÞ: ð1Þ

Here Cðq; zÞ represents the concentration of the diffusing
interstitial clusters as a function of both the transverse

q ¼ ðx; yÞ, and axial z coordinates, D is the axial diffu-

sion constant, and � is the non-zero ratio between dif-

fusion constants in each of the transverse directions, to

that of the axial direction.

3. A single absorbing cavity

We begin by finding the steady state distribution of

concentration around a stationary absorbing spherical

cavity of radius a. In the steady state the concentration

of cavities satisfies equation

D
o2

oz2

�
þ �

o2

oq2

�
Cðq; zÞ ¼ 0 ð2Þ

(subsequently represented by L̂LCðq; zÞ ¼ 0) outside the

sphere, with boundary conditions Cðq; zÞ jjqj2þz2¼a2¼ 0

and Cðq; zÞ jjqj2þz2¼1¼ C1, where C1 is the homoge-

neous SIA cluster concentration in the absence of the

cavity.

Rescaling the z coordinate allows us to create a di-

rect analogy with the homogeneous Poisson equation

describing the distribution of the electrostatic poten-

tial around a charged conducting ellipsoid. The corres-

ponding solution [10] is

Fig. 1. Diffusion types on a 2-dimensional (2-D) square lattice: (a) random isotropic 2-D, (b) 1-D with rare changes in the direction,

analogous to 1-D glide with rare BV changes, (c) strongly anisotropic, analogous to 1-D glide with rare self-climb.
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Cðq; zÞ ¼ C1 �
C1 arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1��Þa2

b2

q

arctan
ffiffiffiffiffiffi
1��
�

q ;

b2 ¼ �z2 þ qj j2 � ð1� �Þa2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �Þa2 þ �z2 þ jq½ j2
2 � 4ð1� �Þa2 qj j2

q
:

ð3Þ

Our subsequent treatment of an ensemble of randomly

distributed cavities requires investigating mathemati-

cal properties of this solution. We note that when the

operator L̂L is applied to the concentration field given

above, the resulting expression (representing the effective

sink generating the concentration field) is identically

equal to zero everywhere except for the surface defined

by ðjqj2 6 ð1� �Þa2Þ in the plane z ¼ 0.

This surface is a circular disc of radius q0 ¼ a
ffiffiffiffiffiffiffiffiffiffiffi
1� �

p
,

which is smaller than the radius of the absorbing sphere.

The disc is located at the centre of the sphere with its

axis pointing in the direction of anisotropy. The disc

degenerates to a point in the case � ¼ 1 (corresponding

to isotropic diffusion), and fills the cross section of the

sphere when � ¼ 0 (corresponding to strictly 1-D diffu-

sion).

The distribution of sink strength is inhomogeneous

across the surface of the disc, namely

L̂LCðx; y; zÞ ¼ 2D
ffiffi
�

p

arctan
ffiffiffiffiffiffi
1��
�

q dðzÞHðq2
0 � x2 � y2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
0 � x2 � y2

p C1; ð4Þ

where Hðq2
0 � x2 � y2Þ ¼ 1 for x2 þ y2 6q2

0 and Hðq2
0 �

x2 � y2Þ ¼ 0 for x2 þ y2 > q2
0. This gives us a radially

symmetric disc, with a very high absorption strength at

the edges of the disc compared to the centre of the disc.

For comparison, in the case of isotropic diffusion the

distribution of sink strength associated with an ab-

sorbing cavity is given by a delta-function located at the

centre of the cavity.

4. Many absorbing cavities

Using Eq. (4) we consider how a concentration field

of SIA clusters is affected by a random distribution of

absorbing cavities. We now attempt to evaluate the

concentration field of SIAs that does not correspond to

a specific configuration of absorbing cavities, but instead

represents the result of statistical ensemble averaging

over all the possible configurations of positions of cavi-

ties. The averaging over positions of the centres of

cavities uses the statistical scattering formalism [5,11]:

hCðrÞi ¼ C1ðrÞ þ
Z

dRanðRaÞdRdr0Gf ðr;RÞ

� T ðR� Ra; r
0 � RaÞhCðr0Þi: ð5Þ

Here we introduced a quantity analogous to the T

matrix of the theory of scattering:

T ðr�Ra; r
0 �RaÞ

¼ dðr0 �RaÞ

� 2D
ffiffi
�

p

arctan
ffiffiffiffiffiffi
1��
�

q dðz� zÞ0Hðq2
0 � ðx� x0Þ2 � ðy � y0Þ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
0 � ðx� x0Þ2 � ðy � y0Þ2

q :

ð6Þ

The Green�s function Gf ðq; zÞ describing anisotropic

propagation of SIA clusters through a crystal free of

cavities is defined by equation L̂LGf ðq; zÞ ¼ dðqÞdðzÞ.
We operate on Eq. (5) with the anisotropic operator

L̂L and obtain

L̂LhCðrÞi ¼ L̂LC1ðrÞ þ
Z

dRanðRaÞdRdr0

� dðr� RÞT ðR� Ra; r
0 � RaÞhCðr0Þi: ð7Þ

Taking into account the definition of the T matrix,

we see that this equation is equivalent to

L̂LhCðrÞi

¼ L̂LC1ðrÞ þ 2D
ffiffi
�

p
nðrÞ

arctan
ffiffiffiffiffiffi
1��
�

q

�
Z

dx0dy0
Hðq2

0 � ðx� x0Þ2 � ðy � y0Þ2ÞhCðx0; y0; zÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
0 � ðx� x0Þ2 � ðy � y0Þ2

q :

ð8Þ

The integration in the latter equation is performed over

the surface of the disc, the size of which is many times

smaller than the characteristic scale of variation of the

statically averaged concentration field hCðx; y; zÞi. We

can therefore treat the average concentration field as

approximately constant over the entire range of inte-

gration. Using cylindrical polar coordinates centred

about (x; y), we obtain

L̂L

2
64 � 4pDanðrÞ

ffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffi
1� �

p

arctan
ffiffiffiffiffiffi
1��
�

q
3
75hCðrÞi ¼ L̂LC1ðrÞ: ð9Þ

At this point, we include the effect of absorption of in-

terstitial clusters by dislocations. Dislocations are ex-

tended linear objects and the influence of anisotropy of

diffusion on the rate of absorption by dislocations is

likely to be less significant than it is on the absorption by

voids. In our treatment we neglect the effect of aniso-

tropy on the absorption by dislocations. We take the

mean-field homogeneous sink strength due to disloca-

tions as qZi, where q is the dislocation density, and Zi is

the dislocation bias factor which occurs in SRT. More

precise evaluation of this term will be necessary for a

fully quantitative study based on our model
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L̂L

2
64 � 4pDanðrÞ

ffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffi
1� �

p

arctan
ffiffiffiffiffiffi
1��
�

q � DqZi

3
75hCðrÞi ¼ L̂LC1ðrÞ:

ð10Þ

To proceed further, we need to find the average Green�s
function describing the propagation and absorption of

SIAs in a random distribution of cavities. We are

looking for the average steady state distribution of the

anisotropically diffusing particles generated by a unit

point source situated at r00. The Green�s function satisfies
equation

L̂L

2
64 � 4pDanðrÞ

ffiffi
�

p ffiffiffiffiffiffiffiffiffiffiffi
1� �

p

arctan
ffiffiffiffiffiffi
1��
�

q � DqZi

3
75hGðr; r00Þi

¼ �dðr� r00Þ; ð11Þ

the solution of which is

hGðr; r00Þi ¼
exp � lðr; r00Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pan

ffiffiffiffi
1��
�

p

arctan
ffiffiffiffi
1��
�

p þ qZi
�

r� �

4p
ffiffi
�

p
Dlðr; r00Þ ;

lðr; r00Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x00Þ2 þ ðy � y00Þ2 þ �ðz� z00Þ2

q
:

ð12Þ

This Green�s function has the shape of a prolate

spheroid, and in the limit of highly anisotropic diffusion

its extends to a length longer than the characteristic

distance between absorbing cavities in that particular

direction. The limit of highly anisotropic diffusion re-

quires going beyond the mean-field treatment, and this

condition defines the range of validity of the treatment

based on statistical theory of scattering. Because of this,

our subsequent mean-field results cannot be applied

quantitatively to systems with extreme anisotropy of

cluster diffusion.

5. Void swelling

Assuming that the concentration of cavities in the

material is sufficiently low so that anisotropic pertur-

bations of the concentration field associated with dif-

ferent cavities do not overlap, we move closer to our

eventual aim of finding the rate of growth of absorb-

ing cavities in the presence of constant homogeneous

irradiative generation of vacancy-interstitial pairs. We

consider a specific configuration of cavities at ra, rb, etc.

Denoting by a30 the volume that one extra vacancy

contributes to the size of a cavity, we obtain an ex-

pression for the flux of particles going into cavity a in

the form of an integral over the surface area of the cavity

d

dt

4
3
pa3a
a30

� �
¼

I
JðrÞdSa: ð13Þ

Using Gauss� theorem, we transform this integral

into an integral over the volume of the cavity V:

d

dt

4
3
pa3a
a30

� �
¼

Z
V
divðJðrÞÞdr ¼

Z
V
L̂LCðrÞdr

¼
Z
V
L̂LC1ðrÞdrþ

Z
V
dr

X
a

Z
dRdr0

� L̂LGf ðr;RÞT ðR� Ra; r
0 � RaÞCaðr0Þ;

ð14Þ

where the inner integration is performed over entire

space and Ca stands for the concentration field that

would occur if the cavity a was absent.

d

dt

4
3
pa3a
a30

� �
¼

Z
L̂LC1ðrÞdrþ

Z
dr

X
a

Z
dRdr0

� dðr� RÞT ðR� Ra; r
0 � RaÞCaðr0Þ: ð15Þ

Since the volume fraction of absorbers is assumed to be

small, defects cannot be produced by cascades inside the

cavity and the first term can be neglected. Also, noting

the fact that all scattering matrices apart from Ta are

identically equal to zero inside the volume of integration

V, we find that the summation reduces to only one term,

the contribution from the absorber a

d

dt

4
3
pa3a
a30

� �
¼

Z
V
dr

Z
dr0 T ðr� Ra; r

0 � RaÞCaðr0Þ

¼
Z

dr0 T ðRa; r
0ÞCaðr0Þ: ð16Þ

At this point we substitute CaðrÞ ¼
R
dr00Gðr; r00ÞKðr00Þ,

where Kðr00Þ corresponds to the net rate of generation of

SIAs per unit volume. This rate describes the generation

of defects by irradiation cascades after any initial re-

combination has occurred.

The difference between absorption rates of vacancies

and interstitials governs the net growth of voids. The

total number of vacancies and interstitials created in the

material per unit time is the same. The defects are gen-

erated in close proximity relative to the diffusive scale we

are looking at, so Kiðr00Þ ¼ Kvðr00Þ. By making the mean-
field approximation, using our average Green�s function
as an approximation to the exact Green�s function for a

given configuration, and treating all voids as equally

sized, we arrive at a relation for the swelling rate:

d

dt

4
3
pa3

a30

� �
¼

Z
drdr0 dr00 ðTvðr; r0ÞhGvðr0; r00Þi

� Tiðr; r0ÞhGiðr0; r00ÞiÞKðr00Þ: ð17Þ

We treat the vacancies as diffusing isotropically which

means that the first term of Eq. (17) is equal to

4paK
qZv þ 4pna

: ð18Þ
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For the anisotropically diffusing interstitial clusters, we

get the second term of Eq. (17) equal to

K

2p arctan
ffiffiffiffiffiffi
1��
�

q
Z

dr0 dr00
dðz0Þ exp � Blðr00; r00Þ

� �
lðr0; r00Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2
0 � x02 � y02

p ; ð19Þ

B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pan

ffiffiffiffiffiffi
1��
�

q

arctan
ffiffiffiffiffiffi
1��
�

q þ qZi

�

vuuut :

Carrying out the integration, we find this equal to

4paK

4panþ qZi arctan
ffiffiffiffi
1��
�

pffiffiffiffiffiffi
1��

p ffiffi
�

p

ð20Þ

and the growth rate is therefore given by

d

dt

4
3
pa3

a30

� �
¼ 4paK

1

4panþ qZv

0
B@ � 1

4panþ qZi arctan
ffiffiffiffi
1��
�

pffiffiffiffiffiffi
1��

p ffiffi
�

p

1
CA:

ð21Þ

6. Results and comparison

Eq. (21) predicts that unsaturated void growth occurs

at any finite value of dislocation bias.

We examine growth in the limits of small and large

voids. For small a, the dose dependence of volume

swelling is given by a3 � t3=2. Even for large a, we obtain
the dose dependence of volume swelling of the form

a3 � t3=4. This sublinear dependence does not show sat-

uration in the limit of large t and is similar to the de-

pendence observed experimentally.

Fig. 2 shows a comparison between experimental data

and the three models discussed in this paper. The exper-

imental results are a compilation [12] of swelling data

from copper irradiated by neutrons at 523K [2,13–16]. As

well as predicting the continued lack of saturation in

growth of voids even at high doses, this anisotropicmodel

produces a good fit with experimental swelling results.

Acknowledgements

This work was funded by the UK Department of

Trade and Industry, EURATOM, the Overseas Re-

search Students Award Scheme and by the Linacre

College Applied Materials Scholarship.

References

[1] A.D. Brailsford, R. Bullough, Philos. Trans. Roy. Soc. A

302 (1981) 87.

[2] B.N. Singh, T. Leffers, A. Horsewell, Philos. Mag. A 53

(1986) 233.

[3] C.H. Woo, B.N. Singh, Philos. Mag. A 65 (1992) 889.

Fig. 2. A comparison of swelling between experiment and the three models discussed in this paper. Theoretical void growth was

initiated at the point of the first experimental observation. A typical value of the dislocation bias of 0.02 was used. Parameters varied

for a good fit: in this model � ¼ 0:01, and in the PBM the dislocation capture diameter is 4 nm.

980 T.S. Hudson et al. / Journal of Nuclear Materials 307–311 (2002) 976–981



[4] H. Trinkaus, B.N. Singh, A.J.E. Foreman, J. Nucl. Mater.

199 (1992) 1.

[5] S.L. Dudarev, Phys. Rev. B 62 (2000) 9325.

[6] S.I. Golubov, B.N. Singh, H. Trinkaus, J. Nucl. Mater. 276

(1000) 78.

[7] N. Soneda, T.D. de la Rubia, Philos. Mag. A 78 (1998)

995.

[8] H. Trinkaus, B.N. Singh, S.I. Golubov, J. Nucl. Mater.

283–287 (2000) 89.

[9] H.L. Heinisch, B.N. Singh, S.I. Golubov, J. Nucl. Mater.

276 (2000) 59.

[10] L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, in: Electrody-

namics of Continuous Media, 2nd Ed., Oxford, 1984, p. 23.

[11] U. Frisch, in: A.T. Bharucha-Reid (Ed.), Probabilistic

Methods in Applied Mathematics, New York, 1968, p. 75.

[12] B.N. Singh, A.J.E. Foreman, Philos. Mag. A 66 (1992)

975.

[13] C.A. English, B.L. Eyre, J.W. Muncie, Atomic Energy

Research Establishment, Harwell, 1986, Report No.

AERE-R-12188.

[14] J.L. Brimhall, B. Mastel, J. Nucl. Mater. 29 (1969) 123.

[15] Y. Adda, in: J.W. Corbett, L.C. Ianiello (Eds.), Radiation-

Induced Voids in Metals, USAEC-CONF. 710601, Albany,

1971, p. 31.

[16] S.J. Zinkle, K. Farrell, J. Nucl. Mater. 168 (1991) 262, 168

(1991) 179, 994.

T.S. Hudson et al. / Journal of Nuclear Materials 307–311 (2002) 976–981 981


	Absence of saturation of void growth in rate theory with anisotropic diffusion
	Introduction
	The model
	A single absorbing cavity
	Many absorbing cavities
	Void swelling
	Results and comparison
	Acknowledgements
	References


